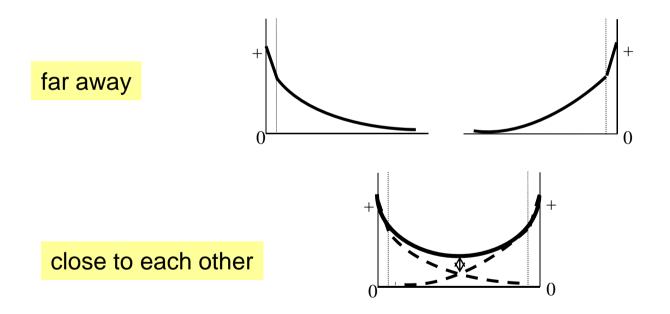
Lecture 6

Surface Forces II:
Double Layer Force,
DLVO theory and beyond

The electrostatic double layer force

 When electric double layers of two surfaces overlap a force will arise.



 we expect this force to be a repulsive one as the surface charge is not completely screened.

Equation for DL-force

 Gibbs free energy (per unit area) of two infinitely separated double layers:

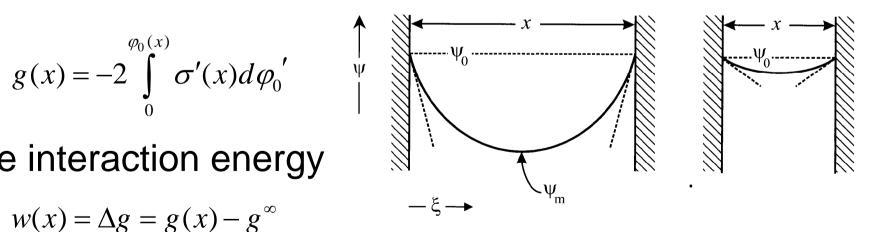
$$g^{\infty} = -2\int_{0}^{\varphi_0} \sigma' d\varphi_0'$$

 if the surface are at a distance x from each other both surface charge and potential depend on x.

$$g(x) = -2\int_{0}^{\varphi_0(x)} \sigma'(x)d\varphi_0'$$

the interaction energy

$$w(x) = \Delta g = g(x) - g^{\infty}$$



• the interaction force: $\Pi = -\frac{d\Delta g}{d\Delta g}$

Equation for DL-force

Poisson-Boltzmann equation:

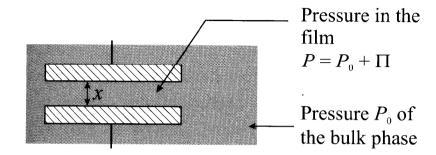
$$ec_0\left(e^{\frac{e\varphi}{kT}} - e^{\frac{-e\varphi}{kT}}\right) - \varepsilon\varepsilon_0\frac{d^2\varphi}{dx^2} = 0$$

after first integration:

$$c_0 kT \left(e^{\frac{e\varphi}{kT}} - e^{\frac{-e\varphi}{kT}} \right) - \frac{\varepsilon \varepsilon_0}{2} \left(\frac{d\varphi}{dx} \right)^2 = P$$

Equation for DL-force

The disjoining pressure:



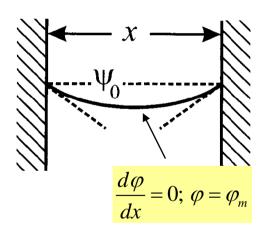
$$\Pi = P - 2kTc_0 = c_0kT \left(e^{\frac{e\varphi}{kT}} - e^{\frac{-e\varphi}{kT}} - 2 \right) - \frac{\varepsilon\varepsilon_0}{2} \left(\frac{d\varphi}{d\xi} \right)^2$$

Electrostatic interaction between identical surfaces

 As at the equilibrium the pressure is the same everywhere, we calculate it in the middle of the gap:

$$\Pi = c_0 kT \left(e^{\frac{e\varphi_m}{kT}} - e^{\frac{-e\varphi_m}{kT}} - 2 \right)$$

for low potentials:



$$\Pi = \frac{c_0 e^2}{kT} kT \varphi_m^2 = \frac{\mathcal{E}\mathcal{E}_0}{2\lambda_D^2} kT \varphi_m^2$$

$$\lambda_D = \sqrt{\frac{\mathcal{E}\mathcal{E}_0 kT}{2c_0 e^2}}$$

if we have and expression for the potential we can calculate the pressure

Electrostatic interaction between identical surfaces

for a slight overlap of DLs we can assume

$$\varphi_m = 2\varphi'(x/2)$$

for low potentials

$$\Pi = \frac{2\varepsilon\varepsilon_0}{\lambda_D^2} \varphi_0^2 e^{-x/\lambda_D}$$

$$w(x) = -\int_{-\infty}^{x} \Pi(x')dx' = -\frac{2\varepsilon\varepsilon_0 \varphi_0^2}{\lambda_D} e^{-x/\lambda_D}$$

for high potentials

$$w(x) = 64c_0kT\lambda_D \tanh^2\left(\frac{e\varphi_0}{4kT}\right)e^{-x/\lambda_D}$$

The DLVO theory

 The theory explains why dispersions aggregate when salt concentration is increased

Derjaguin-Landau-Verwey-Overbeek

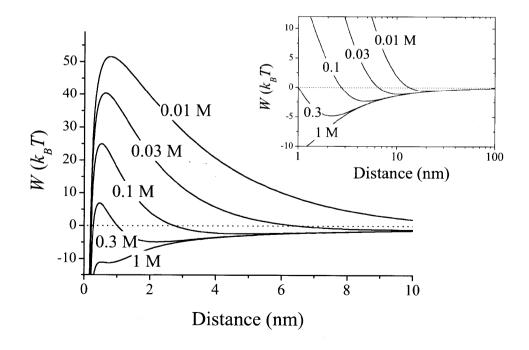
Derjaguin B.V. and Landau L.D., 1941. "Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes". Acta Physicochimica URSS **14**, 633-662.

Verwey E.J.W. and Overbeek J.Th.G., 1948. "Theory of the Stability of Lyophobic Colloids". Elsevier, New York

The DLVO theory

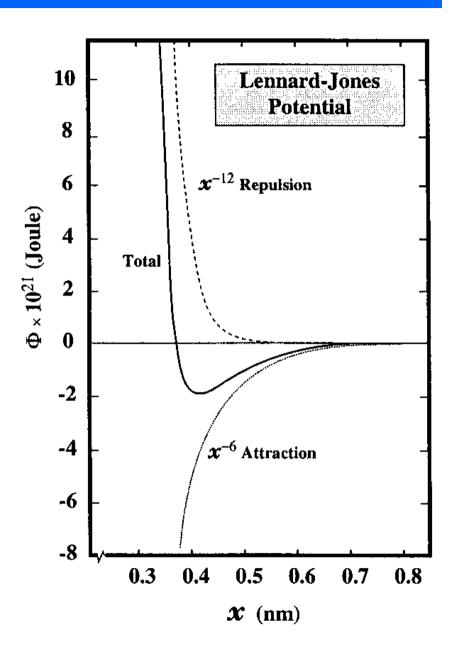
 Coagulation of dispersed particles is explained by the interplay of two forces: van der Waals and double-layer force (DLVO forces)

$$w(x) = 64c_0kT\lambda_D \left(\frac{\exp(e\varphi_0/2kT)-1}{\exp(e\varphi_0/2kT)+1}\right)^2 \exp(-x/\lambda_D) - \frac{A_H}{12\pi x^2}$$



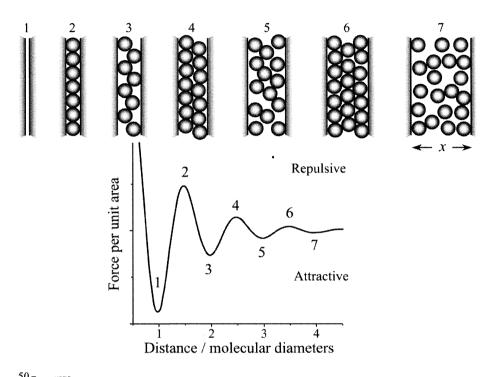
Born repulsion

- origin in same interatomic potential as van der Waals
- repulsion from overlap of electron shells
- very short range force
- prevents contact between attached particles
- provides finite depth to primary minimum

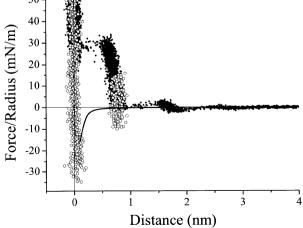


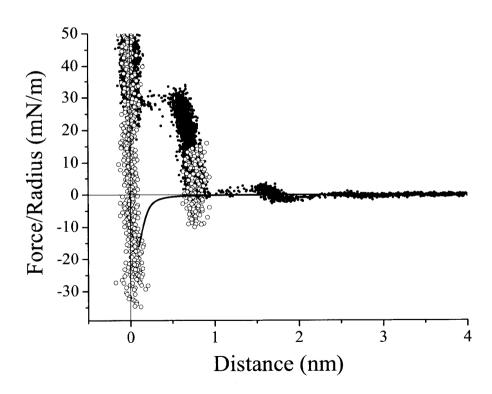
Solvation forces:

$$f(x) = f_0 \cos\left(\frac{2\pi x}{d_0}\right) e^{-x/x_0}$$



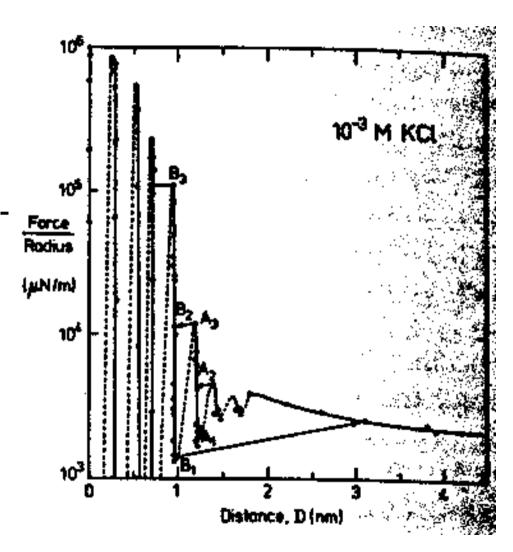
Experimentally measured force between a SiN tip and mica in 1-propanol





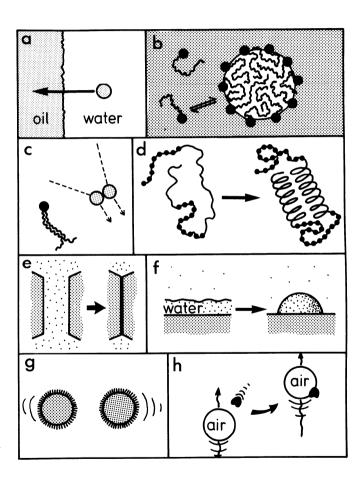
Hydration

- "vicinal" water structure
- repulsive force
- corresponds to layer-bylayer removal of vicinal water
- effect of ionic strength, cation
 - $Li^+, Na^+ > K^+ > Cs^+$



Hydrophobic interaction

- attractive force
- exponentially decaying
- stronger than vdWaals forces
- usually two component assumed:
 - short-range (1-2nm) due to change in water structure:
 - long-distance (up to 200nm) due to spontaneously formed gas bubbles



examples of hydrophobic interaction

Non-DLVO forces: Steric force

- A macromolecule in solution:
- for a freely jointed segment chain model:

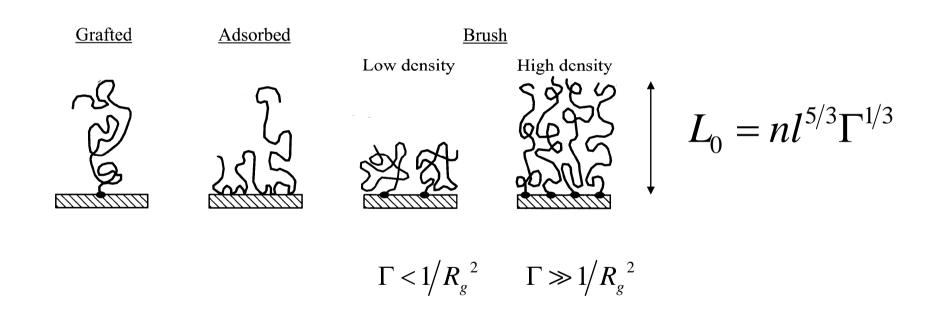
- Rms of the end-to-end distance: $R_0 = l\sqrt{n}$

- radius of gyration:
$$R_0 = \frac{l\sqrt{n}}{\sqrt{6}}$$

- Solvent influence
 - ideal solvent: interaction between the monomers is the same as with the solvent
 - good solvent: repulsive interaction between monomers, Rg increases
 - bad solvent: attraction between the monomers, Rg decreases

Steric force

- The force between two surface coated by a polymer is determined by:
 - the nature of solvent
 - the way the polymer is deposited and its density



Steric force

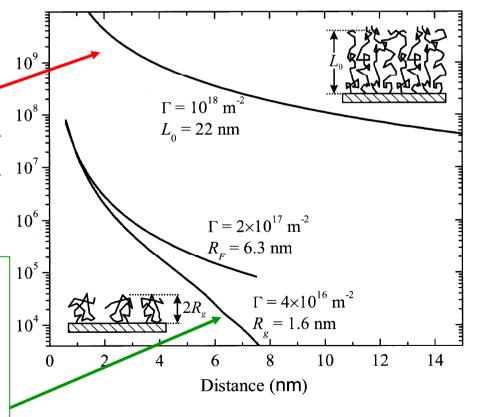
- Repulsive force caused by:
 - Entropic factor (reduced configuration entropy)
 - osmotic pressure in the gap
 - intersegment force
- High density brush

• High density brush
$$\Pi(x) = kT\Gamma^{3/2} \left[\left(\frac{2L_0}{x} \right)^{\frac{9}{4}} - \left(\frac{x}{2L_0} \right)^{\frac{3}{4}} \right]$$
• Low density brush

Low density brush

$$\Pi(x) = \frac{kT\Gamma}{x} \left(\frac{2\pi^2 R_g^2}{x^2} - 1 \right) \quad \text{for } x \le 3\sqrt{2}R_g$$

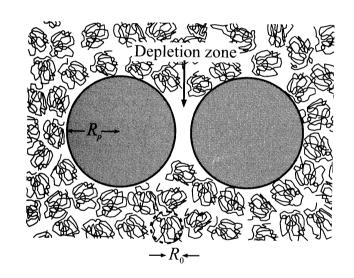
$$\Pi(x) = \frac{kT\Gamma x}{R_g} \exp\left(-\frac{x}{2R_g}\right)^2 \quad \text{for } x > 3\sqrt{2}R_g$$



Depletion forces

- Attractive force between two particles in solution of macromolecules will arise due to osmotic pressure
- Asakura-Oosawa theory:

$$\begin{cases} W(D) \approx \frac{\pi}{2} ckTR_p \left(2R_0 - D\right)^2 & D \le 2R_0 \\ W(D) = 0 & D > 2R_0 \end{cases}$$



 Alternatively could be explained due increase of total free volume available to macromolecules

Contact forces and adhesion

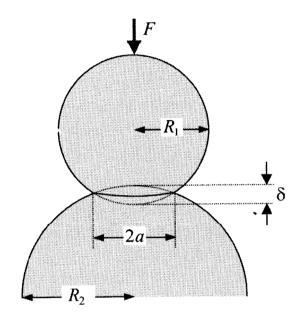
Hertz theory

If two spheres having Young moduli E₁, and Poisson ratios n₁, n₂ are pressed together:

$$a^{3} = \frac{3R^{*}}{4E^{*}} F$$
effective radius
$$\delta = \frac{a^{2}}{R^{*}}$$
reduced Young modulus

– where:

$$R^* = \frac{R_1 \cdot R_2}{R_1 + R_2} \frac{1}{E^*} = \frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}$$



Contact forces and adhesion

- Johnson, Kendall and Roberts (JKR theory)
 - additionally the work of cohesion is taken into account

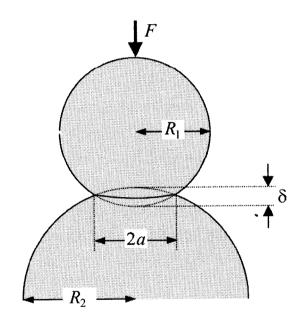
$$a^{3} = \frac{3R^{*}}{4E^{*}} \left(F + 3\pi W R^{*} + \sqrt{6\pi W R^{*} F + \left(3\pi W R^{*}\right)^{2}} \right)$$

 so, a force is required to separate two solids

$$F_{adh} = \frac{3\pi}{2} WR^*; \quad W = 2\gamma_s$$

- Derjagin, Muller, Toropov (DMT theory)
 - van der Waals forces are taken into account

$$F_{adh} = 4\pi\gamma_s R^*$$

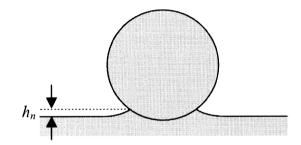


Contact forces and adhesion

Criterion:

 if size of the neck is larger than interatomic distance – JKR, otherwise DMT

$$h_n \approx \left(\frac{\gamma_s^2 R^*}{E^{*2}}\right)^{1/3}$$



Problems

End of chapter problems:

- ch.6.8
- ch.6.9